An unexpected allyl-transfer reaction under conditions of Lewis acid-promoted cyclization of homoallylic alcohols with aldehydes

Vyacheslav V. Samoshin,*a Irina P. Smoliakova,*b Mingming Hanb and Paul H. Grossa

^a Department of Chemistry, University of the Pacific, Stockton, California 95211, USA Fax: +1 209 946 2607; e-mail: vsamoshi@vms1.cc.uop.edu

^b Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, USA.

Fax: +1 701 777 2331; e-mail: ismoliakova@mail.chem.und.nodak.edu

The title reaction was observed along with cyclization in the $SnCl_4$ -promoted reaction of 2-[3,4,6-tri-O-benzyl-2-deoxy-2-(p-tolylsulfanyl)- β -D-glucopyranosyl]ethanal with pent-4-en-2-ol and this result was interpreted in terms of anchimeric assistance by sulfur to the unusual fragmentation of an intermediate alkoxycarbenium ion.

The Lewis acid-promoted cyclization of homoallylic alcohols with aldehydes or their acetals was suggested for the preparation of 2,6-disubstituted tetrahydropyran derivatives, 1,2 potential precursors of C-glycosides 2 and other cyclic polyethers. An application of this cyclization to recently synthesised 2-[2-deoxy2-arylsulfanyl- β -D-gluco(or manno)pyranosyl]ethanals 3 (e.g. 1, Scheme 1) promised to provide a convenient route to C-(1 \Rightarrow 1)-disaccharides.

BnO O Me

BnO O Me

STol

SnCl₄ CH₂Cl₂

$$-50$$
 °C

BnO O Me

C-(1 \rightarrow 1)-disaccharides

Scheme 1

However, we have found that the $SnCl_4$ -promoted reaction of 2-[3,4,6-tri-O-benzyl-2-deoxy-2-(p-tolylsulfanyl)-β-D-glucopyranosyl]ethanal^{3(c)} **1** with pent-4-en-2-ol **2** under standard conditions^{2,†} did not lead to the anticipated smooth formation of compound **3** (Scheme 1), but a complicated mixture of many products was formed. A flash-chromatographic separation of this mixture afforded two new homoallylic alcohols (2S)-**4** and (2R)-**4** as the major isolated products (33% and 13%, respectively).

A single set of signals was observed in ¹H and ¹³C NMR spectra for each of compounds (2*S*)-4 and (2*R*)-4, thus proving that these are individual diastereomers.[‡] The signals in well-resolved ¹H NMR spectra (300 MHz) were assigned using the

COSY and homonuclear decoupling techniques. The large spin-spin coupling constants H¹-H²', H²-H³', H³'-H⁴' and H⁴-H⁵' proved the *trans*-diaxial orientation of these pairs of protons and, consequently, the equatorial position of all substituents (Figure 1).

More interestingly, large coupling constants were also observed for the $H^{1'}-H^{1a}$ and $H^{1a}-H^{2}$ interactions in (2S)-4 (Table 1, Figure 1) in both C_6D_6 and $CDCl_3$ indicating a predominantly antiperiplanar orientation of these pairs of protons [compare to the corresponding couplings in (2R)-4 and to the medium size of ${}^3J_{H^2H^{3a}}$ and ${}^3J_{H^2H^{3b}}$, Table 1]. This fact points to the strong predominance of a certain conformation for the side chain of the molecule. Only the (S)-configuration of the new chiral

‡ (2S)-1-[3,4,6-tri-O-benzyl-2-deoxy-2-(p-tolylsulfanyl)-β-D-glucopyranosyl]pent-4-en-2-ol (2S)-4: white crystals, mp 113–114 °C. $[\alpha]_D^{25} = -22.2^{\circ}$ $(c, 0.02, \text{CHCl}_3)$. ¹H NMR (300 MHz, C_6D_6) δ : 1.53 (dt, 1H, H^{1a}, J 14.4 and 9.6 Hz), 1.98 (s, 3H, MeAr), 2.25 (br. ddd, 1H, H3b, J 6.1, 7.6 and 13.8 Hz), 2.42 (br. dt, 1H, H^{3a}, J 13.8 and 6.3 Hz), 2.59 (dt, 1H, H^{1b}, J 14.4 and 2.1 Hz), 2.97 (t, 1H, H², J 10.4 Hz), 3.30 (ddd, 1H, H⁵, J 2.1, 5.5 and 9.3 Hz), 3.42 (ddd, 1H, H¹, J 2.1, 9.6 and 10.4 Hz), 3.45 (br. t, 2H, $H^{3'} + H^{4'}$, $J \sim 10$ Hz), 3.52 (m, 2H, $H^{6'}$), 3.70 (br. s, 1H, OH), 4.02 (ddt, 1H, H², J 2.1, 9.6 and 6.2 Hz), 4.26 (d, 1H, OCH₂Ph, J 12.1 Hz), 4.31 (d, 1H, OCH₂Ph, J 12.1 Hz), 4.50 (d, 1H, OCH₂Ph, J 11.3 Hz), 4.81 (d, 1H, OCH₂Ph, J 11.3 Hz), 4.91 (d, 1H, OCH₂Ph, J 10.4 Hz), 5.08 (br. d, 2H, $H^{5a} + H^{5b}$, $J \sim 14$ Hz), 5.11 (d, 1H, $OCH_{2}Ph$, J = 10.4 Hz), 6.02 (dddd, 1H, H⁴, J 6.5, 7.6, 9.5 and 18.0 Hz), 6.81 (d, 2H, SC₆H₄Me, J 8.0 Hz), 7.03–7.24 (m, 11H, Ar), 7.28 (d, 2H, Ar, J 7.1 Hz), 7.41 (d, 2H, Ar, J 6.9 Hz), 7.47 (d, 2H, SC_6H_4Me , J 8.0 Hz). ¹³C NMR (75.5 MHz, C_6D_6) δ : 21.13 (Me), 39.54 (CH₂), 42.81 (CH₂), 58.46 (CH), 69.69 (CH₂), 71.83 (CH), 73.66 (CH₂), 75.05 (CH₂), 76.37 (CH₂), 78.91 (CH), 80.24 (CH), 82.17 (CH), 84.94 (CH), 116.99 (=CH₂), 127.85 (CH_{Ar}), 127.92 (CH_{Ar}), 128.25 (CH_{Ar}), 128.52 (CH_{Ar}), 128.60 $\begin{array}{c} \text{(CH}_{Ar}\text{)}, \ 128.68 \ \text{(CH}_{Ar}\text{)}, \ 130.13 \ \text{(CH}_{Ar}\text{)}, \ 132.42 \ \text{(C}_{Ar}\text{)}, \ 132.77 \ \text{(CH}_{Ar}\text{)}, \ 135.84 \ \text{(=CH}-\text{)}, \ 137.34 \ \text{(C}_{Ar}\text{)}, \ 138.64 \ \text{(C}_{Ar}\text{)}, \ 138.97 \ \text{(C}_{Ar}\text{)}, \ 139.27 \ \text{(C}_{Ar}\text$ some CH_{Ar} signals overlapped with C_6D_6 signals. HRMS, m/z: found 625.3010; calc. for $C_{39}H_{44}O_{5}S$ (MH+) 625.2990.

 $(2R)\text{-}1\text{-}[3,4,6\text{-}tri\text{-}O\text{-}benzyl\text{-}2\text{-}deoxy\text{-}2\text{-}(p\text{-}tolylsulfanyl)\text{-}}\beta\text{-}D\text{-}glucopyra\text{-}$ nosyl]pent-4-en-2-ol (2R)-4: colourless oil, $[\alpha]_{25}^{25} = \sim 0^{\circ}$ (c, 0.01, CHCl₃). ¹H NMR (300 MHz, C₆D₆) δ : 1.81 (ddd, 1H, H^{1a}, J 2.2, 7.7 and 14.6 Hz), 1.98 (s, 3H, MeAr), 2.05 (br. dt, 1H, H^{3b}, J 14 and 7 Hz), 2.17 (br. dt, 1H, H^{3a} , J 14 and 7 Hz), 2.33 (ddd, 1H, H^{1b} , J 2.8, 9.3 and 14.6 Hz), 2.60 (br. s, 1H, OH), 3.12 (t, 1H, H2', J 10.7 Hz), 3.25 (dt, 1H, H⁵', J 9.8 and 3.0 Hz), 3.49 (dd, 1H, H³', J 8.7 and 10.7 Hz), 3.56 (d, 2H, $H^{6'}$, J 3.0 Hz), 3.70 (br. t, 2H, $H^{1'}$ + $H^{4'}$, $J \sim 9.2$ Hz), 3.93 (ddt, 1H, H^2 , $J \sim 9.2$ Hz) 2.2, 9.3 and 7 Hz), 4.27 (d, 1H, OCH₂Ph, J 12.1 Hz), 4.35 (d, 1H, OCH₂Ph, J 12.1 Hz), 4.58 (d, 1H, OCH₂Ph, J 11.3 Hz), 4.86 (d, 1H, OCH₂Ph, J 11.3 Hz), 4.93 (d, 1H, OCH₂Ph, J 10.7 Hz), 5.00 (br. d, 2H, $H^{5a} + H^{5b}$, $J \sim 13$ Hz), 5.12 (d, 1H, OCH_2Ph , J 10.7 Hz), 5.80 (ddt, 1H, H^4 , J 9.6, 17.7 and 7 Hz), 6.80 (d, 2H, SC_6H_4Me , J 8.0 Hz), 7.02–7.30 (m, 13H, Ar), 7.43 (br. d, 2H, Ar, J 7.7 Hz), 7.50 (d, 2H, SC₆H₄Me, J 8.0 Hz). 13 C NMR (75.5 MHz, C_6D_6) δ : 21.11 (Me), 39.18 (CH $_2$), 42.82 (CH₂), 57.33 (CH), 68.05 (CH₂), 69.44 (CH), 73.61 (CH₂), 75.01 (CH₂), 76.29 (CH₂), 78.88 (CH), 79.05 (CH), 80.16 (CH), 85.06 (CH), 117.07 (=CH₂), 127.84 (CH_{Ar}), 128.23 (CH_{Ar}), 128.49 (CH_{Ar}), 128.57 (CH_{Ar}), 128.63 (CH_{Ar}), 130.09 (CH_{Ar}), 132.51 (C_{Ar}), 132.83 (CH_{Ar}), 135.74(=CH–), 137.21 (C_{Ar}), 138.80 (C_{Ar}), 139.23 (C_{Ar}), 139.42 (C_{Ar}); some CH $_{Ar}$ signals overlapped with C_6D_6 signals. HRMS, m/z: found 625.2982; calc. for C₃₉H₄₄O₅S (MH⁺) 625.2990.

 $^{^\}dagger$ A solution of SnCl₄ (86 mg, 0.33 mmol) in CH₂Cl₂ (10 ml) was added dropwise to a stirred cold (–50 °C) solution of pent-4-en-2-ol (25 mg, 0.29 mmol) and aldehyde 1^3 (140 mg, 0.24 mmol) in CH₂Cl₂ (15 ml) under N₂. The mixture was stirred for 28 h at room temperature and quenched at 0 °C by the dropwise addition of cold 1 M HCl (5 ml). The standard extraction procedure and evaporation gave a colourless oil, which was separated by flash chromatography (silica gel, hexane:ether = 4:1) affording 60 mg of a complex mixture of cyclization products (¹H and ¹³C NMR data) in addition to 50 mg (33%) of (2S)-4 and 20 mg (13%) of (2R)-4. The purity of (2S)-4 and (2R)-4 (not less than 95%) was confirmed by ¹H and ¹³C NMR spectroscopy. The composition was proved by HRMS.

Table 1 Selected coupling constants, $^3J_{\rm HH}/{\rm Hz}$, in $^1{\rm H}$ NMR (300 MHz) spectra of (2S)-4 and (2R)-4.

$^3J_{ m HH}$	(2S)- 4			(2R)- 4		
	CDCl ₃	C_6D_6	[2H ₆]acetone	CDCl ₃	C_6D_6	[2H ₆]acetone
H1'-H1a	9.9	9.6	9.5	7.4	7.7	9.5
$H^{1'}$ $-H^{1b}$	1.9	2.1	2.2	3.0	2.8	2.0
$H^{1a}-H^{2}$	9.9	9.6	7.8	2.2	2.2	2.3
$H^{1b}-H^2$	1.9	2.1	4.4	9.1	9.3	9.6
H^2-H^{3a}	6.1	6.2	6.0	7	7	6.5
H ² –H ^{3b}	6.3	6.1	6.3	7	7	6.5

centre can enable the molecule to adopt the lowest energy conformation with a relaxed zigzag shape of the $\rm C^1'C^1C^2C^3$ side chain and a stabilising intramolecular hydrogen bond (Figure 1). The downfield shift of the OH signal in $\rm C_6D_6$ for (2S)-4 (3.7 ppm) as compared to that for (2R)-4 (2.6 ppm) is an indication of such a hydrogen bond.⁴ This interpretation is also supported by a measurement in [^2H_6]acetone. Being a strong hydrogen-bond acceptor, acetone is capable of breaking the intramolecular hydrogen bond. This decreases the relative stability of the conformation depicted in Figure 1 and increases the population of other possible conformations (cf. ref. 5). As a result, the observed averaged coupling constants $^3J_{\rm H^{10}H^2}$ and $^3J_{\rm H^{10}H^2}$ have changed towards the medium values in an acetone solution of (2S)-4 (Table 1). These changes are stronger for $^3J_{\rm H^{10}H^2}$ and $^3J_{\rm H^{10}H^2}$ than for $^3J_{\rm H^{1}H^{1a}}$ and $^3J_{\rm H^{10}H^2}$. This indicates a larger degree of freedom for the internal rotation around the C¹-C² bond as compared with the rotation around the C¹-C¹ bond.

Similarly, the large values of ${}^3J_{\mathrm{H^1H^{1a}}}$ and ${}^3J_{\mathrm{H^{1b}H^2}}$ measured for (2R)-4 in an [2H_6]acetone solution (Table 1) attest to a predominance of the low energy zigzag conformation of the C ${}^1\mathrm{C^1C^2C^3}$ side chain (Figure 1). The possibility of intramolecular hydrogen bonding in $\mathrm{C_6D_6}$ and $\mathrm{CDCl_3}$ solutions makes alternative unstable conformations less unfavourable and changes ${}^3J_{\mathrm{H^1H^{1a}}}$ and ${}^3J_{\mathrm{H^1H^{1b}}}$ towards medium values.

The transfer of an allyl moiety from a homoallylic alcohol to an aldehyde has never been observed in Lewis acid-promoted cyclizations. 1,2 However, this interesting type of transfer was described recently for essentially different conditions: a catalytic amount of Sn(OTf)₂ as a Lewis acid, molecular sieves and various derivatives of 2-methylpent-4-en-2-ol at -25 °C or at room temperature were used for allylation of aldehydes. Due to an additional 2-methyl group in the homoallylic alcohol, the reaction could proceed *via* a stable tertiary alkoxycarbenium ion, and emission of acetone appeared to be the driving force of the process. 6 Tin(II) triflate was unable to stabilise the intermediate cation(s) by providing a nucleophile for addition or a base for proton removal. Contrary to that, in this work we used a 40% excess of tin(IV) chloride providing the abundance of nucleophilic chloride anions. Therefore, we anticipated the

$$H^{6'}$$
 OBn $H^{4'}$ OBn $H^{6'}$ OBn $H^{6'}$ OBn $H^{2'}$ H^{1a} H^{3a} H^{5a} H^{5a} $H^{5'}$ S $H^{1'}$ OH H^{3b} H^{5b} H^{5b} H^{5b} H^{5b} H^{5b} H^{5b}

Figure 1

transformation of intermediate cyclic cation 5 into the cyclization product 3 (Scheme 2, cf. refs. 1,2). The unexpected formation of allyl-transfer products 4 can be explained by the alternative reaction pathway depicted in Scheme 2. The act of allyl transfer can occur via alkoxycarbenium ion 7 formed either by the 'oxa-Cope' rearrangement^{1(k),6} of alkoxycarbenium ion 6 or by its cyclization into cation 5 followed by ring opening. The anchimeric assistance by sulfur must play a crucial role in the ejection of acetaldehyde, transforming 7 into stable bicyclic sulfonium ion 8. It is reasonable to assume that the randomly oriented allyl group in 8 is able to adopt eventually the more stable pseudo-equatorial position due to the reversible breaking of the C-S bond with the formation of cation 9 or a corresponding chloride.§ The last step of transformations occurred during a standard treatment of the reaction mixture. The predominant formation of (2S)-4 diastereomer should be expected as a result of a rear-side nucleophilic displacement by water of the C-S bond (Scheme 2). In order to prove this mechanism unambiguously, we are currently exploring the possibility of using nucleophiles other than H₂O.

[§] Homoallylic cation **9** can be stabilised by the participation of neighbouring double bond leading to formation of a nonclassic carbenium ion.⁷ This latter can result in various cyclization products.

I. S. and M. H. are grateful to ND EPSCoR (grant no. OSR-9452892) and the National Institute of General Medical Sciences (grant no. 1 R15 GM/OD55965-01) for financial support.

References

1 (a) M. L. Melany, G. A. Lock and D. W. Thompson, J. Org. Chem., 1985, 50, 3925; (b) R. C. Winstead, T. H. Simpson, G. A. Lock, M. D. Schiavelli and D. W. Thompson, J. Org. Chem., 1986, 51, 275; (c) N. A. Nikolic, E. Gonda, C. P. Desmond Longford, N. T. Lane and D. W. Thompson, J. Org. Chem., 1989, 54, 2748; (d) Z. Y. Wei, J. S. Li, D. Wang and T. H. Chan, Tetrahedron Lett., 1987, 28, 3441; (e) Z. Y. Wei, J. S. Li and T. H. Chan, J. Org. Chem., 1989, 54, 5768; (f) F. Perron and K. F. Albizati, J. Org. Chem., 1987, 52, 4128; (g) F. Perron-Sierra, M. A. Promo, V. A. Martin and K. F. Albizati, J. Org. Chem., 1991, 56, 6188; (h) L. Coppi, A. Ricci and M. Taddei, J. Org. Chem., 1988, 53, 911; (i) L. Marko and D. J. Bayston, Tetrahedron, 1994, 50, 7141; (j) L. D. M. Lolkema, H. Hiemstra, C. Semeyn and W. N. Speckamp, Tetrahedron, 1994, **50**, 7115; (k) L. D. M. Lolkema, C. Semeyn, L. Ashek, H. Hiemstra and W. N. Speckamp, Tetrahedron, 1994, 50, 7129; (1) C. Semeyn, R. Blaauw, H. Hiemstra and W. N. Speckamp, J. Org. Chem., 1997, **62**, 3426; (m) J. Yang, G. S. Viswanathan and C.-J. Li, *Tetrahedron* Lett., 1999, 40, 1627; (n) M. J. Cloninger and L. E. Overman, J. Am. Chem. Soc., 1999, 121, 1092.

- 2 (a) P. H. Gross, Carbohydr. Polym., 1998, 37, 215; (b) M. Valdayo, D. Ngyen and P. H. Gross, Abstracts of 207th ACS National Meeting, San Diego, 1994, CARB 4; (c) P. H. Gross, M. Suarez-Contreras, M. Valdayo, D. E. Gremyachinskiy and V. V. Samoshin, Abstracts of 215th ACS National Meeting, Dallas, 1998, CARB 36; (d) V. V. Samoshin, D. E. Gremyachinskiy and P. H. Gross, Mendeleev Commun., 1999, 53.
- 3 (a) I. P. Smoliakova, R. Caple, D. Gregory, W. A. Smit, A. S. Shashkov and O. S. Chizhov, *J. Org. Chem.*, 1995, **60**, 1221; (b) I. P. Smoliakova and M. Han, *Abstracts of 215th ACS National Meeting*, Dallas, 1998, ORGN 335; (c) I. P. Smoliakova, M. Han, J. Gong, R. Caple and W. A. Smit, *Tetrahedron*, 1999, **55**, 4559.
- 4 R. M. Silverstein and F. X. Webster, Spectrometric Identification of Organic Compounds, Wiley, New York, 1998, p. 163.
- 5 (a) N. S. Zefirov, V. V. Samoshin, O. A. Subbotin, I. V. Baranenkov and S. Wolfe, *Tetrahedron*, 1978, 34, 2953; (b) V. V. Samoshin, O. V. Bychkova, V. A. Chertkov, A. K. Shestakova, L. P. Vatlina, N. A. Smirnov and L. P. Kastorsky, *Zh. Org. Khim.*, 1996, 32, 1104 (*Russ. J. Org. Chem.*, 1996, 32, 1066).
- 6 J. Nokami, K. Yoshizane, H. Matsuura and S. Sumida, J. Am. Chem. Soc., 1998, 120, 6609.
- 7 J. March, Advanced Organic Chemistry, Wiley, New York, 1992, p. 312.

Received: 30th June 1999; Com. 99/1508